碳化硅如何提升鑄件質量
碳化硅如何提升鑄件質量
2、預處理的作用
2.1 形核的原理在Fe-C共晶系中,灰鑄鐵在共晶凝固階段由于石墨的熔點高,是共晶體的領先相,奧氏體借助石墨析出。以每個石墨核心為中心所形成的石墨+奧氏體兩相共生共長的晶粒稱共晶團。存在于鑄鐵熔液中的亞微觀石墨聚集體、未熔的石墨微粒、某些高熔點硫化物、氧化物、碳化物、氮化物顆粒等,都可能成為石墨的非均質晶核。球墨鑄鐵的形核與灰鑄鐵形核沒有本質區別,只是核心物質中增加有鎂的氧化物和硫化物。
鐵液中石墨的析出必須經歷形核和生長兩個過程。石墨的形核有均質形核和非均質形核兩種方式。均質形核亦稱自生晶核。鐵液中有大量起伏不定的,超過臨界晶核尺寸的,近程有序排列的碳原子集團,可能成為均質晶核。實驗證明均質晶核的過冷度很大,必須主要依靠非均質晶核作為鐵液中石墨的生核劑。鑄鐵熔液中存在大量外來質點,每1cm3鐵液中,僅氧化物質點就有500萬個。只有那些與石墨的晶格參數、位相存在一定關系的質點,才能成為石墨形核基底。晶格匹配關系的特征參數稱平面失配度。當然只有晶格平面失配度小,才能夠讓碳原子容易與石墨晶核匹配。如果晶核材料是碳原子,那么它們的失配度為零,這樣的成核條件最好。
碳化硅在鐵液內分解成碳和硅比鐵液本身含有的碳和硅的內能大,鐵液本身所含的Si溶于奧氏體中,球墨鑄鐵鐵液中的碳,部分在鐵液中形成石墨球,部分在奧氏體中尚未析出。因此碳化硅的加入,有很好的脫氧作用。
Si + O2 → SiO2 (1)
MgO +SiO2 →MgO?SiO2 (2)
2MgO +2SiO2→ 2MgO?2SiO2 (3)
頑輝石成分MgO?SiO2和鎂橄欖石成分2MgO?2SiO2與石墨(001)失配度高不易作為石墨形核的基底。當經過含有Ca、Ba、Sr及Al與硅鐵的孕育合金鐵液處理后,得到:
MgO?SiO2 + X → XO?SiO2 + Mg
2.2 非平衡石墨的預孕育:
一般,通過孕育來擴大非均質形核范圍,鐵液中非均質形核的作用:①促進共晶凝固階段C大量析出并形成石墨,促進石墨化;②減小鐵液過冷度,減少白口傾向;③增加灰鑄鐵共晶團數或增加球墨鑄鐵石墨球數。
SiC是爐料熔煉過程中加入的。碳化硅熔點2700℃,在鐵液中不熔化,只按下列反應式融熔于鐵液。
SiC+Fe→FeSi+C(非平衡石墨)
鑄鐵熔煉時加入碳化硅,對于灰鑄鐵,非平衡石墨的預孕育,大量生成共晶團并提高生長溫度(減小相對過冷度),有利于形成A型石墨;晶核數量增加,使片狀石墨細小,提高石墨化程度減少白口傾向,從而提高力學性能。對于球墨鑄鐵,結晶核心增多使石墨球數增加,球化率得以提高。
2.3 消除E型石墨過共晶
灰鑄鐵,C型、F型初生石墨在液相形成,由于生長過程不受奧氏體干擾,一般情況下,容易長成大片狀且分枝少的C型石墨;薄壁鑄件快速冷卻時,石墨會分叉生長成星狀的F型石墨。[4]
共晶凝固階段生長的片狀石墨,在不同化學成分和不同過冷條件下,生成不同形態和不同分布的A、B、E、D型石墨。
A型石墨在過冷度不大和成核能力較強的共晶團內生成,在鑄鐵中均勻分布。細片狀珠光體中,石墨長度越小,抗拉強度越高,適用于機床及各種機械鑄件。
D型石墨為點、片狀的枝晶間石墨,呈無方向性分布。D型石墨鑄鐵鐵素體量高,力學性能受影響。但D型石墨鑄鐵奧氏體枝晶多,石墨短小卷曲,共晶團呈球團形,所以與相同基體A型石墨鑄鐵相比,往往具有較高的強度。
E型石墨是一種比A型石墨短小的片狀石墨。與D型石墨一樣位于枝晶間,統稱為枝晶石墨。E墨容易在碳當量低(亞共晶程度大)、奧氏體枝晶多而發達的鑄鐵中產生。這時,共晶團與枝晶交叉生長,由于枝晶間共晶鐵液數量較少,析出的共晶石墨只有沿著枝晶方向分布,具有明顯的方向性。形成E型石墨的過冷度大于A型石墨小于D型石墨,它的粗細、長短處于A、D型石墨之間。E型石墨不屬于過冷石墨,經常與D型石墨伴生。E型石墨的方向性枝晶間分布,使鑄鐵很容易在較小的外力作用下,沿著石墨排列方向呈帶狀脆斷。所以出現E型石墨,用手可以掰斷小型鑄件的邊角,鑄件強度大大下降。隨著含碳量的增加,形成細小枝晶間石墨所必須的冷卻速度提高了,產生枝晶間石墨的可能性減少了。熔液高度過熱以及長時間保溫會使過冷度增大,從而提高枝晶生長速度,使枝晶變長,方向性更明顯。用SiC對鐵液做預孕育處理時,同時減小初生奧氏體的過冷度,此時觀察到短的奧氏體枝晶。消除了E型石墨產生的結構基礎。
2.4 提高鑄鐵質量
對于球墨鑄鐵,在球化劑加入量相同的情況下,用碳化硅進行預處理,鎂的最終收得率較高。用碳化硅預處理的鐵液,如果保持鑄件殘留鎂量大致相同,球化劑的加入量可以減少10%,球墨鑄鐵的白口傾向得到緩解。
碳化硅在熔煉爐內,除去(1)式反應所示在鐵液中增碳、增硅以外,還進行式(2)、(3)的脫氧反應,如果加入的SiC靠近爐壁,生成的SiO2會在爐壁沉積增加爐壁厚度。在熔煉的高溫下,SiO2將發生式(4)的脫碳反應,式(5)、(6)的渣化反應。
(7) 3SiC+2Fe2O3=3SiO2+4Fe+3C
(8) C+FeO→Fe+CO↑
(9)(SiO2)+2C=[Si]+2CO(氣態)
(10)SiO2+FeO →FeO?SiO2 (渣)
(11)Al2O3+SiO2→Al2O3?SiO2 (渣)
2.5 碳化硅的使用方法
3、結束語
免責聲明:平臺所提供的信息及資料除原創外,部分內容來源于網絡等媒體,版權歸原作者及媒體網站所有,平臺力求尊重原創、尊重版權,盡可能標注版權信息和轉載來源;如出現信息不準確或作者署名有誤等情況,敬請原作者諒解,并立即通知平臺,我們將調查核實后予以更正或刪除,同時向您表示歉意!